
Introduction
• Assistant Professor at University of 

Colorado
• Research group interests:

• Quantifying the impacts of climate and land-
cover changes on water resources

• Remote sensing applications
• Land surface modeling
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Overview

1.  Applications of soil moisture variability
• Applying remotely sensed (SMAP) soil moisture to estimate 

surface evaporation
• Developing a DA framework to predict irrigation magnitude 

applicable to remotely sensed soil moisture
2.  Evaluating the changing importance of snowpack in 
water supply prediction
• Implications of projected future snow conditions for 

streamflow forecasting
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Using SMAP Satellite 
Observations to 

Estimate Terrestrial 
Evaporation Rates

Image credit: NASA

4



Transpiration
Canopy 

Evaporation

Soil 
Evaporation

SMAP sensing depth = 5 cm

Why focus on soil evaporation?
1. Guide development of models, ET 
algorithms, and partitioning
2. Understanding of water and carbon cycles

Using SMAP soil drying in a multi-
platform framework allows us to 
produce a unique estimate of soil 
evaporation: ESMAP
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• P = Precipitation between SMAP observations – from NLDAS forcing
• T = Transpiration from surface layer – from a variation of the Penman-

Monteith
• qbot = flux across bottom of surface layer – from Hydrus
• ∆" = Change in surface layer soil moisture between SMAP observation

• P = Precipitation between SMAP observations – from NLDAS forcing
• T = Transpiration from surface layer – from a variation of the Penman-

Monteith (MOD16 algorithm)
• qbot = flux across bottom of surface layer – from Hydrus-1D
• ∆" = Change in surface layer soil moisture between SMAP observation

Residual will be loss due to soil evaporation - ESMAP
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Calculating ESMAP

5 cm
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Esoil
calculated

Esoil
calc.

Esoil
calculated

Water balance 
calculation over intervals 
without significant 
precipitation
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Water balance 
calculation

Valid SMAP Overpass Intervals
Soil evaporation (Esoil) calculated between valid overpass intervals.

Excluding intervals with infiltration, 
evaporation is primarily due to soil drying
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SMAP Overpasses

Number of SMAP overpasses
April 1, 2015 to April 16, 2018 9
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A Variation of the Penman-Monteith (MOD16)

Eq. 2, 15 and 22 from Mu et al. (2011)

Constants
NLDAS2 Forcing or LSM
MOD13A2 EVI

?@A =
BCDEF − GHIJ
GKLM − GHIJ

Restrict by 
percent of roots in 
the surface layer

Now we have an estimate 
for transpiration from the 

surface layer!

A linear soil moisture 
restriction on 
transpiration 
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Darcian velocity for unsaturated zone:
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SMAP 
sensing 
depth

• Soil hydraulic properties from NLDAS
• Meteorological forcing from NLDAS

Simunek, J., et al. "HYDRUS-1D.", version 4.17 (2003).

Bottom Flux, qbot

Hydrus 1-D Simulations

How to constrain the bottom flux, qbot
• Flux is not measured in situ

Matric 
potential 
gradient
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Hydrus
in situ SMAPLittle Washita 

OK
SMAP Core
Validation
Site



ESMAP vs Soil Drying Rate

• In the absence of 
precipitation
• ESMAP approximates soil 

drying rate
• qbot approaches zero and 

can even be upward
• Surface transpiration is 

relatively small, most 
transpiration comes from 
the root zone 
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Analysis over 11 SMAP Core 
Validation Sites



ESMAP vs NLDAS2 Noah

SMAP

Noah Noah

ESMAP
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ESMAP Summary
• ESMAP is a unique approach to measure one component of ET 
• The alpha version of ESMAP is on the same scale as Noah soil 

evaporation
Moving forward…

• Data assimilation is underway within a LSM to fill gaps
• Understand uncertainties:
o Soil hydraulic properties
o PET and transpiration estimates

• Validate ESMAP against observed and modeled estimates
• Expand time and spatial domain
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E.S. Small, B. Livneh, Abolafia-Rosenzweig, R., and A.M. Badger, 2018: Estimating soil evaporation using satellite-based 
soil moisture drying rates (in prep).



Developing a Data 
Assimilation 
framework to 
predict irrigation
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Irrigation

Why focus on irrigation?
1. Represents among the largest global 
consumptive water uses
2. Alters the water and energy balances
3. Poorly observed

Research question:
Can observed changes in soil moisture 
guide estimates of irrigation through 
data assimilation?
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Changes in soil moisture

Created from Meiyappan et al. (2012) dataset



Experiment overview

• The long-term goal is to apply the method to remotely sensed 
soil moisture, e.g. SMAP
• First test the approach using simulated soil moisture from a 

land surface model (LSM) to understand the impacts of key 
uncertainties.
•Apply a Particle Batch Smoother data assimilation scheme; 

relies on as few as possible external parameterizations

18



Experiment overview

Synthetic experiment:
1. Apply known irrigation to a land surface model simulation =  Synthetic 
Truth Irrigation
The soil moisture from the synthetic truth simulation represents remotely 
sensed soil moisture
2. Apply the Particle Batch Smoother (data assimilation) to identify the 
irrigation forcing that produces the closest match in soil moisture
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Simulated 6 AM Soil Water 
Content for each particle 

6 AM Truth SMC = Synthetic 
“Observation” for DA 

System

2

Different Irrigation 
Forcing for each particle

Particlei
Equivalent Soil 
Water Content

1

Synthetic Truth: Precipitation + 
Known Irrigation
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WeightiWeightiWeightiWeightiWeightiWeighti

Apply 
Weighti

to particle 
irrigation
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Best Estimate 
Irrigation

Best Estimate 
Irrigation
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Subtract Obs. 
Precipitation

D

Truth Soil 
Moisture 

Content (SMC)

3
Assimilate 

Synthetic DA 
Experiment 

Design

Simulated SMC
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P1
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August 1, 0600 August 2, 0600 August 3, 0600
Date

0.1

0.4

0.2

0.3

P1
P2
P3
P4

W1 = 0.005
W2 = 0.480
W3 = 0.500
W4 = 0.015

Particle Filter 
Weights

W1 = 0.083
W2 = 0.167
W3 = 0.150
W4 = 0.600

Particle Filter 
Weights

W1 = 0.0025
W2 = 0.4871
W3 = 0.4557
W4 = 0.0547

Particle Smoother 
Weights

P1
P2
P3
P4Resample

2-Day Fixed Window

PPBS = 
P1*0.0025 +
P2*0.4871 + 
P3*0.4557 +
P4*0.0547

2

10

6
Different irrigation 

“precipitation” forcing 
for each particle
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Case study:
VIC LSM model grid-box 
(Silver Creek NE, 06772898) 
692 mm irrigation applied*

Examine performance for:
1. Daily ‘Observation’
2. 1-3 day SMAP overpasses
3. Enhanced signal-to-noise
4. Unknown irrigation time
5. Model uncertainty

*Yonts, C. D. (2002). Crop water use in western Nebraska. Cooperative Extension, Institute of Agriculture and Natural Resources, University of 
Nebraska-Lincoln.
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Demonstration of daily assimilation: Soil moisture
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Demonstration of daily irrigation calculation
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Percent bias 1.8
R 0.98

Demonstration of daily irrigation performance
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Return Interval
Daily Overpasses

Percent bias 1.8 0.46
R 0.98 0.98

Performance for SMAP 1-3 day overpass interval

26



Performance for larger signal-to-noise 
Observation Noise - RMSE (m3m-3)

0.01 0.02 0.03 0.04 0.05
Percent bias 0.12 0.43 2.38 3.51 9.45
R 0.97 0.93 0.91 0.86 0.73

27



The issue of unknown irrigation time

Irrigation applied after 
the satellite overpass

Timing of satellite 
overpasses and DA
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Performance for unknown irrigation times
Particulate Irrigation Timing

2-3 AM 4-5 AM 6-7 AM 8-9 AM
Percent bias 16.87 8.91 57.94 15.9
R 0.95 0.98 0.85 0.36
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Irrigation summary
• The particle filter is a unique approach to estimate irrigation
• The synthetic experiment shows promise, yet highlights key 

uncertainties

Moving forward…
• Uncertainty of irrigation time is perhaps the most significant:
o A two-stage approach that first estimates the time of irrigation, 

then the magnitude
• Exploring model uncertainty, e.g. unknown parameters to represent 

differences between remote sensing and LSMs

30
Abolafia-Rosenzweig, R., et. al., 2018: A method for estimating irrigation with a particle batch smoother (in prep).



How will changes in projected 
snowpack affect our ability to 
predict seasonal streamflow
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Overview
• Managing for drought in the Upper Colorado River Basin (UCRB)

– Interviews with regional water managers
• Snowpack as a key predictor of streamflow 

– Future snow projections and changes in streamflow predictability
Are snowpack sensitivities in the UCRB unique relative to the western 
U.S?
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Motivation for this research
• Concerns over drought risk throughout the 

UCRB—Western Slope systems are 
understudied
• Growing awareness: Increased investments 

in drought information systems
• Need to better understand how water 

managers manage for drought and use 
information now, in order to support them 
in the future
• Uncertainty around future indicator 

robustness
Research led by Rebecca Page and Lisa Dilling
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Methods
• Five water systems across the Western Slope
• 17 in-person interviews with key decision-makers
• Reviewed internal documents
• Observed decision-making meetings
• Analyzed interview transcripts, documents, and 

observation notes using nVivo qualitative coding 
software

McNie, E. 2014. Evaluation of the NIDIS Upper Colorado River Basin Drought Early Warning System. Available at: 
http://wwa.colorado.edu/publications/reports/NIDIS_report.pdf

Snow Water Equivalent (SWE) was identified as 
the most reliable for water supply forecasting 
here (consistent with 112 UCRB stakeholders, 
McNie, 2014)

Research led by Rebecca Page and Lisa Dilling
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How will the predictive value of snow information 
change under a warmer climate?

Step 1 Baseline: Evaluate the predictive 
power of historical snow observations to 
forecast warm season streamflow, through 
statistical and physics-based models.

Step 2 Future Change: Quantify how 
predictive power will change on the basis 
of CMIP5 downscaled hydrology 
simulations for mid-century
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Courtesy: Jenna Stewart

UCRB 
Stream Gauge
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Predictive power of historical snowpack

SWE has been used to predict 
warm-season (Apr-Jul) 
streamflow in two ways:
• Initializing numerical models
• As a predictor in statistical 

equations that relate historical April 
1 SWE* with April-May-June-July 
(AMJJ) streamflow

*Other forecast dates include 1 Jan, Feb, Mar, May
Accumulated precipitation is commonly used together with SWE
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NRCS Visual Interactive Prediction and Estimation Routines (VIPER) 
supports linear, Z-score, and principal components regression

Official regression equations (VIPER) relate 
multiple SWE and precipitation stations to 
streamflow:

AMJJ 
streamflow Coefficients

Station data
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Baseline: Example for a Colorado River tributary

37

SWE (predictor)

Target: Apr-Jul observed flow

Predictive flow model
Q = ai(SWEi) + b

Elevation (ft)

8000-9000

9000-10,000

10,000-11,000



Are higher elevation predictors more robust under 
climate warming?
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Predictive flow model
Q = ai(SWEi) + b
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What about under future climate?
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April 1 SWE bias (mm) for mid century 
2036-2065, relative to historical period*:
• SWE reductions in most places
• Increases particularly in W. Colorado 

headwaters

*Brekke, L., Thrasher, B. L., Maurer, E. P., and Pruitt, T. (2013). Downscaled CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5 climate projections, 
comparison with preceding information, and summary of user needs. Technical Service Center, Bureau of Reclamation, US Department of the Interior, Denver, CO.

VIC model
Future SWE change Based on 29 CMIP5 predictions, 

hydrologically downscaled*
Historical simulated April 1 SWE 
compares favorably with station 
observations (n=133; R=0.93)



How does future predictability change?

40*Brekke, L., Thrasher, B. L., Maurer, E. P., and Pruitt, T. (2013). Downscaled CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5 climate projections, 
comparison with preceding information, and summary of user needs. Technical Service Center, Bureau of Reclamation, US Department of the Interior, Denver, CO.

VIC model

Predictive flow model
Q = ai(SWEi) + b
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Significant rank 
correlation between 
prediction error and 
elevation (p<0.01)

Number of snow observations used

If we isolate drought 
years errors get 
larger in this context



Drought: Prediction errors in drought years largely 
depend on the evaluation protocol
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Forecast
Observation

Drought No Drought

Drought Hits (YY) False alarms (YN) 

No Drought Misses (NY) Correct rejections (NN) 

Use an Equitable Threat Score (ETS) to 
evaluate the categorical prediction of drought
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1 – Perfect; -1/3 – No skill



Build a new prediction model every 5 years 
(as is done in practice) until the year 2100
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The Upper Colorado River Basin appears uniquely 
resilient to warming in a drought prediction context
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1 – Perfect; 0 – No skill
Drought Equitable Threat Score (ETS)



The Upper Colorado River Basin appears uniquely 
resilient to warming in a drought prediction context
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Change in Drought Equitable Threat Score (ETS)



This can be understood through the relative retention 
of April 1 SWE compared with other regions

45
Change in number of April 1 days without snow

Predictive flow model
Q = ai(SWEi) + b



Conclusions and next steps

Drought risk management
• Drought risk management landscape (decision context for drought 

early warning) is complex, even for small systems
• Entrenched reliance on observed local snowpack suggests that 

changing information use behavior in the future may be challenging
Future hydrology
• Streamflow predictability is elevation dependent upon snowpack 

observations 
• Future snowpack/streamflow prediction in the UCRB appears to be 

uniquely resilient
46

B. Livneh, A.M. Badger, J.J. Lukas, and A. W. Wood, 2018: On the changing role of snowpack in future water prediction 
(in prep).
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